High-performance multi-functional reverse osmosis membranes obtained by carbon nanotube·polyamide nanocomposite

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-performance multi-functional reverse osmosis membranes obtained by carbon nanotube·polyamide nanocomposite

Clean water obtained by desalinating sea water or by purifying wastewater, constitutes a major technological objective in the so-called water century. In this work, a high-performance reverse osmosis (RO) composite thin membrane using multi-walled carbon nanotubes (MWCNT) and aromatic polyamide (PA), was successfully prepared by interfacial polymerization. The effect of MWCNT on the chlorine re...

متن کامل

Removal of assimilable organic carbon and biodegradable dissolved organic carbon by reverse osmosis and nanofiltration membranes

The main objective of this study was to evaluate the effectiveness of reverse osmosis (RO) and nanofiltration (NF), under various solution chemistries, on bacterial regrowth potential as quantified by assimilable organic carbon (AOC) and biodegradable dissolved organic carbon (BDOC). The bench-scale experiments, using tap groundwater spiked with acetate as organic carbon, revealed that AOC remo...

متن کامل

Ultrapermeable, reverse-selective nanocomposite membranes.

Polymer nanocomposites continue to receive tremendous attention for application in areas such as microelectronics, organic batteries, optics, and catalysis. We have discovered that physical dispersion of nonporous, nanoscale, fumed silica particles in glassy amorphous poly(4-methyl-2-pentyne) simultaneously and surprisingly enhances both membrane permeability and selectivity for large organic m...

متن کامل

Performance and Structure of Thin Film Composite Reverse Osmosis Membranes Prepared by Interfacial Polymerization in the Presence of Acid Acceptor

During interfacial polymerization (IP) reaction between m-phenylenediamine (MPDA) and trimesoyl chloride (TMC), a by-product, i.e. hydrochloric acid can produce. This produced acid diffuses back in aqueous phase and protonates MPDA and reduces its reactivity that results in lowering of polymer yield and performance of membrane. Further, for getting consistency in reverse...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Scientific Reports

سال: 2015

ISSN: 2045-2322

DOI: 10.1038/srep13562